6 research outputs found

    Quantum Gravity coupled to Matter via Noncommutative Geometry

    Full text link
    We show that the principal part of the Dirac Hamiltonian in 3+1 dimensions emerges in a semi-classical approximation from a construction which encodes the kinematics of quantum gravity. The construction is a spectral triple over a configuration space of connections. It involves an algebra of holonomy loops represented as bounded operators on a separable Hilbert space and a Dirac type operator. Semi-classical states, which involve an averaging over points at which the product between loops is defined, are constructed and it is shown that the Dirac Hamiltonian emerges as the expectation value of the Dirac type operator on these states in a semi-classical approximation.Comment: 15 pages, 1 figur

    Spin Foams and Noncommutative Geometry

    Get PDF
    We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold or four-manifold as a branched cover. These data are expressed as monodromies, in a way similar to the encoding of the gravitational field via holonomies. We then describe convolution algebras of spin networks and spin foams, based on the different ways in which the same topology can be realized as a branched covering via covering moves, and on possible composition operations on spin foams. We illustrate the case of the groupoid algebra of the equivalence relation determined by covering moves and a 2-semigroupoid algebra arising from a 2-category of spin foams with composition operations corresponding to a fibered product of the branched coverings and the gluing of cobordisms. The spin foam amplitudes then give rise to dynamical flows on these algebras, and the existence of low temperature equilibrium states of Gibbs form is related to questions on the existence of topological invariants of embedded graphs and embedded two-complexes with given properties. We end by sketching a possible approach to combining the spin network and spin foam formalism with matter within the framework of spectral triples in noncommutative geometry.Comment: 48 pages LaTeX, 30 PDF figure

    On Semi-Classical States of Quantum Gravity and Noncommutative Geometry

    Full text link
    We construct normalizable, semi-classical states for the previously proposed model of quantum gravity which is formulated as a spectral triple over holonomy loops. The semi-classical limit of the spectral triple gives the Dirac Hamiltonian in 3+1 dimensions. Also, time-independent lapse and shift fields emerge from the semi-classical states. Our analysis shows that the model might contain fermionic matter degrees of freedom. The semi-classical analysis presented in this paper does away with most of the ambiguities found in the initial semi-finite spectral triple construction. The cubic lattices play the role of a coordinate system and a divergent sequence of free parameters found in the Dirac type operator is identified as a certain inverse infinitesimal volume element.Comment: 31 pages, 10 figure

    On Spectral Triples in Quantum Gravity II

    Full text link
    A semifinite spectral triple for an algebra canonically associated to canonical quantum gravity is constructed. The algebra is generated by based loops in a triangulation and its barycentric subdivisions. The underlying space can be seen as a gauge fixing of the unconstrained state space of Loop Quantum Gravity. This paper is the second of two papers on the subject.Comment: 43 pages, 1 figur
    corecore